Multiple-input-multiple-output cooperative spatial modulation systems
نویسندگان
چکیده
In this study, the authors propose novel cooperative spatial modulation (SM) systems with two main relaying techniques [amplify-and-forward (AF) and decode-and-forward (DF)], where all nodes have multiple transmit and/or receive antennas. Most of the studies in the literature of cooperative SM systems, which combine the advantages of cooperative communications and SM systems, consider only the space shift keying (SK) scheme with single receive/transmit antenna at relay and destination. Since the error performance of SM highly depends on the number of receive antennas and more flexible cooperative communications systems can be obtained by using SM with multiple antennas, it is essential to investigate multiantenna cooperative SM systems. They derive analytical expressions of the average bit error probability for both the newly proposed cooperative SM-DF and cooperative SM-AF systems and validate with the computer simulation results. Furthermore, they present the bit error rate comparison of considered systems with classical M-ary phase SK/quadrature amplitude modulation cooperative systems. Computer simulation results indicate that multiple antennas cooperative SM systems provide better error performance than classical cooperative systems for both relaying techniques.
منابع مشابه
Cooperative Amplify-and-Forward Relaying Systems with Quadrature Spatial Modulation
Quadrature spatial modulation (QSM) is a recent digital multiple-input multiple-output (MIMO) transmission technique. Combined with cooperative relaying, QSM improves the overall spectral efficiency and enhances the communication reliability. In this paper, we study the performance of QSM amplify-and forward cooperative relaying systems. In particular, a closed-form expression for the average p...
متن کاملA Novel Transmission Scheme for Reliable Cooperative Communication
Cooperative communication scheme can be substituted for multiple-input multiple-output (MIMO) technique when it may not be able to support multiple antennas due to size, cost or hardware limitations. In other words, cooperative communication scheme is an efficient method to achieve spatial diversity without multiple antennas. For satisfaction of rising QoS, we propose a reliable cooperative com...
متن کاملAn Improved Transmission Rate Achievement in Cooperative Communication System Based on OFDM
Recently, cooperative system is an interesting issue in communication systems. Single mobile antenna can have transmission diversity gain by the cooperative system as multiple input multiple output (MIMO) system. However, the most of the cooperative systems have a problem about the transmission rate loss. In this paper, hierarchical modulation is proposed in order to solve the transmission rate...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملPerformance Evaluation of Media-based Modulation in Comparison with Spatial Modulation and Legacy SISO/MIMO
The idea of Media-based Modulation (MBM), introduced in [1] [2], is based on embedding information in the variations of the transmission media (channel states). This is in contrast to legacy wireless systems (called Signal-Based Modulation, SBM, in current article) where data is embedded in a RadioFrequency (RF) source prior to the transmit antenna. MBM offers several advantages vs. legacy syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IET Communications
دوره 11 شماره
صفحات -
تاریخ انتشار 2017